

Evaluation of Combined Ultrasonography and Cone Beam Computed Tomography for Clinical Imaging: A Negative Results Study

Dennis Flanagan^{1,*}, Anna Tarakonova², Anshika Pandey², Patrick Kumavor², Carmen Lo², Mohammad Mundiwala²

¹Jacksonville University

²U Conn

Research Article

Open Access &

Peer-Reviewed Article

DOI:

10.14302/issn.2576-6694.jbbs-26-5964

Corresponding author:

Dennis Flanagan, Jacksonville University

Keywords:

Cone beam computed tomography (CBCT), Ultrasonography (US), Oral and maxillofacial imaging, Multimodal imaging integration, Mandibular imaging

Received: January 06, 2026

Accepted: February 02, 2026

Published: February 09, 2026

Academic Editor:

Ian James Martins, Principal Research Fellow, Edith Cowan University

Citation:

Dennis Flanagan, Anna Tarakonova, Anshika Pandey, Patrick Kumavor, Carmen Lo et al. (2026) Evaluation of Combined Ultrasonography and Cone Beam Computed Tomography for Clinical Imaging: A Negative Results Study. *Journal of Biotechnology and Biomedical Science* - 3(2):28-32. <https://doi.org/10.14302/issn.2576-6694.jbbs-26-5964>

Abstract

The combination of ultrasonography (US) and cone beam computed tomography (CBCT) has been proposed as a multimodal imaging strategy capable of uniting real-time soft-tissue assessment with high-resolution three-dimensional visualization of osseous structures. This study critically evaluated whether such integration provides measurable diagnostic or workflow advantages in mandibular imaging. Despite strong theoretical justification, the combined use of US and CBCT failed to demonstrate clinically meaningful improvements in diagnostic accuracy, confidence, or efficiency when compared with CBCT alone. Fundamental physical mismatches, hardware incompatibilities, geometric constraints, and operator-dependent variability limited the anticipated synergistic benefits. These negative findings underscore the importance of reporting unsuccessful integration attempts to guide future research and prevent premature clinical adoption of technically incompatible imaging paradigms.

Introduction

Accurate imaging of the jaws is essential in dentistry, oral and maxillofacial surgery, orthodontics, and periodontology. (1,2) Cone beam computed tomography has become the standard three-dimensional imaging modality for evaluating dentoalveolar structures, implant planning, and temporomandibular joint (TMJ) morphology, while ultrasonography remains a valuable tool for real-time assessment of superficial soft tissues, salivary glands, and vascular structures. Previous literature has suggested that combining these modalities could yield a more comprehensive diagnostic approach by compensating for the limitations inherent to each technique individually.

However, CBCT and US are based on fundamentally different physical principles, acquisition geometries, and reconstruction assumptions. While hybrid use at the workflow level, via sequential acquisition and software-based image fusion, is feasible, the development of a truly integrated or synergistic CBCT-US system remains technically and clinically challenging. This study

evaluates the practical outcomes of combining US and CBCT for mandibular imaging and reports predominantly negative results.

Ultrasonography

Ultrasonography is a non-invasive imaging modality that employs high-frequency acoustic waves to generate real-time images of soft tissues. In maxillofacial applications, US has been used to assess salivary gland pathology, superficial infections, vascular lesions, and soft-tissue masses. (3,4,5,6)

Ultrasonography Principles

Ultrasound imaging relies on the emission and reception of sound waves that reflect and scatter at interfaces with differing acoustic impedance. Image formation depends on time-of-flight and amplitude of returning echoes, assuming relatively uniform sound speed and limited scattering along the propagation path. These assumptions are frequently violated in regions containing bone, air, or complex interfaces.

Ultrasonography Advantages

- Real-time dynamic imaging of soft tissues
- Absence of ionizing radiation
- Portability and cost-effectiveness
- Ability to differentiate cystic and solid lesions
- Utility for image-guided aspiration or biopsy

Ultrasonography Limitations

Despite its advantages, ultrasonography is severely limited in osseous imaging by poor penetration through cortical and trabecular bone, strong reflection at bone-air interfaces, and high operator dependence. Lack of standardized osseous protocols, susceptibility to motion, geometric distortion, and challenges in reproducible image registration further reduce its reliability when integrated with tomographic modalities.

Cone Beam Computerized Tomography (CBCT)

CBCT is a three-dimensional radiographic technique widely used in dental and maxillofacial imaging. It provides high-resolution visualization of osseous structures with lower radiation dose than conventional medical CT.

CBCT Principles

CBCT systems acquire multiple two-dimensional projections using a cone-shaped X-ray beam during gantry rotation. Reconstruction algorithms assume straight-line photon propagation and stable voxel attenuation values, enabling volumetric reconstruction through filtered back-projection or iterative techniques.

CBCT Advantages

- High spatial resolution for bony anatomy
- Accurate three-dimensional representation
- Essential for implant planning and surgical guidance
- Lower radiation dose relative to conventional CT

CBCT Limitations

CBCT exhibits poor intrinsic soft-tissue contrast, susceptibility to scatter and beam-hardening artifacts, and limited ability to characterize non-mineralized tissues. These limitations have motivated interest in complementary modalities such as ultrasonography. (7)

Integration of Ultrasonography and CBCT

The proposed integration of US and CBCT aims to combine soft-tissue and hard-tissue information into a unified diagnostic framework. In practice, integration was limited to sequential acquisition and software-based fusion rather than simultaneous hardware integration. (3,8)

Integration of Ultrasonography and CBCT: Advantages and Limitations

While theoretical advantages include comprehensive tissue assessment and improved diagnostic confidence, practical implementation revealed significant limitations. Increased acquisition time, registration errors, operator variability, and minimal incremental diagnostic value outweighed any perceived benefit. (8)

Integration of Ultrasonography and CBCT: Clinical Applications

Clinical scenarios evaluated included salivary gland disease, TMJ disorders, vascular lesions, and mixed soft- and hard-tissue pathologies. In most cases, ultrasonography provided limited additional information beyond CBCT findings, except for superficial soft-tissue abnormalities.

Mismatches

Fundamental mismatches between X-ray attenuation-based tomography and acoustic wave-based imaging prevent true synergy. CBCT assumes static geometry and linear attenuation, whereas ultrasonography depends on dynamic probe positioning, tissue compression, and heterogeneous sound propagation.

Hardware and Geometric Limitations

CBCT requires rigid gantry rotation with fixed source-detector geometry, while ultrasonography demands direct tissue contact and free probe manipulation. These requirements are mutually incompatible within a single acquisition system, precluding true hardware integration.

Negative Findings

The study demonstrated that:

- Ultrasonography rarely added clinically relevant information beyond CBCT
- Bone interference prevented consistent anatomical correlation
- Combined workflows increased procedure time
- Inter-operator variability reduced reproducibility

Collectively, these findings indicate that US does not meaningfully enhance CBCT-based mandibular imaging under current technological constraints.

Future Considerations

Future progress may depend on advances in artificial intelligence-assisted registration, improved acoustic penetration techniques, standardized imaging protocols, and novel hybrid physics approaches such as X-ray-induced acoustic imaging. Until such developments mature, routine integration remains unjustified. (9,10,11,12,13,14)

Conclusions

Despite strong theoretical appeal, the integration of ultrasonography and CBCT for mandibular imaging failed to demonstrate measurable clinical benefit in this negative results study. Fundamental physical, geometric, and operational incompatibilities limit meaningful synergy between these modalities. Reporting these negative findings contributes to scientific transparency and provides realistic guidance for future research in multimodal imaging.

References

1. Cevidan LH, Bailey LJ, Tucker GR Jr, Styner MA, Mol A, Phillips CL, Proffit WR, Turvey T. Superimposition of 3D cone-beam CT models of orthognathic surgery patients. *Dentomaxillofac Radiol.* 2005 Nov;34(6):369-75. doi: 10.1259/dmfr/17102411. PMID: 16227481; PMCID: PMC3552302.
2. Chatzopoulos GS, Makrygiannakis MA, Tsalikis L, Kaklamanos EG. Three-dimensional volumetric analysis of bone volume change in grade II mandibular furcation defects: A CBCT-based methodological study. *J Dent.* 2026 Jan;164:106236. doi: 10.1016/j.dent.2025.106236.
3. Reda R, Zanza A, Cicconetti A, Bhandi S, Miccoli G, Gambarini G, Di Nardo D. Ultrasound Imaging in Dentistry: A Literature Overview. *J Imaging.* 2021 Nov 14;7(11):238. doi: 10.3390/jimaging7110238. PMID: 34821869; PMCID: PMC8624259.
4. Lim J, Yu HS, Won S, Oh Y, Kim SB, Kim HJ. Intraoral Ultrasonographic Anatomy of the Floor of the Mouth: Implications for Image-Guided Procedures. *Clin Anat.* 2025 Dec 16. doi: 10.1002/ca.70064. Brown T et al. Principles of maxillofacial ultrasonography. 2018.
5. Mao Y, Jiang LP, Wang JL, Chen FQ, Zhang WP, Peng XQ, Chen L, Liu ZX. Hybrid Fusion Model for Effective Distinguishing Benign and Malignant Parotid Gland Tumors in Gray-Scale Ultrasonography. *Ultrasound Med Biol.* 2026 Jan;52(1):52-61. doi: 10.1016/j.ultrasmedbio.2025.06.014.
6. Sönmez G, Kamburoğlu K, Gülsahı A. Accuracy of high-resolution ultrasound (US) for gingival soft tissue thickness measurement in edentulous patients prior to implant placement. *Dentomaxillofac Radiol.* 2021 Jul 1;50(5):20200309. doi: 10.1259/dmfr.20200309. Epub 2020 Nov 30. PMID: 33201732; PMCID: PMC8231686.
7. Newham E, Gill PG, Robson Brown K, Gostling NJ, Corfe IJ, Schneider P. A robust, semi-automated approach for counting cementum increments imaged with synchrotron X-ray computed tomography. *PLoS One.* 2021 Nov 4;16(11):e0249743. doi: 10.1371/journal.pone.0249743. PMID: 34735460; PMCID: PMC8568193.
8. Nguyen KT, Pachêco-Pereira C, Kaipatur NR, Cheung J, Major PW, Le LH. Comparison of ultrasound imaging and cone-beam computed tomography for examination of the alveolar bone level: A systematic review. *PLoS One.* 2018 Oct 3;13(10):e0200596. doi: 10.1371/journal.pone.0200596. PMID: 30281591; PMCID: PMC6169851.
9. Kim K, Kim BC. Diagnostic Performance of Large Language Models in Multimodal Analysis of Radiolucent Jaw Lesions. *Int Dent J.* 2025 Dec;75(6):103910. doi: 10.1016/j.identj.2025.103910.
10. Lee YC, Jung AR, Kwon OE, Kim EJ, Hong IK, Lee JW, Eun YG. Comparison of Computed Tomography, Magnetic Resonance Imaging, and Positron Emission Tomography and Computed Tomography for the Evaluation Bone Invasion in Upper and Lower Gingival Cancers. *J Oral*

Maxillofac Surg. 2019 Apr;77(4):875.e1-875.e9. doi: 10.1016/j.joms.2018.12.010.

11. Jindanil T, Gracea RS, Claessens N, Fontenele RC, Cadenas de Llano-Pérula M, Claes P, Jacobs R. Three-dimensional facial scanning: quantitative and qualitative assessment of five different modalities with CBCT as a reference. J Dent. 2025 Dec;163:106179. doi: 10.1016/j.jdent.2025.106179.
12. Shujaat S, Bornstein MM, Price JB, Jacobs R. Integration of imaging modalities in digital dental workflows - possibilities, limitations, and potential future developments. Dentomaxillofac Radiol. 2021 Oct 1;50(7):20210268. doi: 10.1259/dmfr.20210268.
13. Yan Y, Xiang SL. X-ray-induced acoustic computed tomography and its applications in biomedicine. J Biomed Opt. 2024 Jan;29(Suppl 1):S11510. doi: 10.1117/1.JBO.29.S1.S11510.
14. Bayrakdar IS, Kuran A, Celik O, Orhan K. AI in Temporomandibular Joint Imaging. Neuroimaging Clin N Am. 2025 Nov;35(4):527-537. doi: 10.1016/j.nic.2025.06.001.